GRID2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesGRID2, GluD2, SCAR18, glutamate ionotropic receptor delta type subunit 2
External IDsOMIM: 602368 MGI: 95813 HomoloGene: 74399 GeneCards: GRID2
Orthologs
SpeciesHumanMouse
Entrez

2895

14804

Ensembl

ENSG00000152208

ENSMUSG00000071424

UniProt

O43424

Q61625

RefSeq (mRNA)

NM_001286838
NM_001510

NM_008167
NM_001370966

RefSeq (protein)

NP_001273767
NP_001501

NP_032193
NP_001357895

Location (UCSC)Chr 4: 92.3 – 93.81 MbChr 6: 63.23 – 64.68 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Glutamate receptor, ionotropic, delta 2, also known as GluD2, GluRδ2, or δ2, is a protein that in humans is encoded by the GRID2 gene.[5][6] This protein together with GluD1 belongs to the delta receptor subtype of ionotropic glutamate receptors. They possess 14–24% sequence homology with AMPA, kainate, and NMDA subunits, but, despite their name, do not actually bind glutamate or various other glutamate agonists.[7]

delta iGluRs have long been considered orphan receptors as their endogenous ligand was unknown. They are now believed to bind glycine and D-serine but these do not result in channel opening.[8][9]

Function

GluD2-containing receptors are selectively/predominantly expressed in Purkinje cells in the cerebellum[7][10] where they play a key role in synaptogenesis, synaptic plasticity, and motor coordination.[11]

GluD2 induces synaptogenesis through interaction of its N-terminal domain with Cbln1, which in turn interacts with presynaptic neurexins, forming a bridge across cerebellar synapses.[11][12]

The main functions of GluD2 in synaptic plasticity are carried out by its intracellular C-terminus.[13] This is regulated by D-serine,[14] which binds to the ligand-binding domain and results in changes in the structure of GluD2 without opening the channel in the absence of pre-synaptic connections.[9] Glycine and D-serine can open the channel in GluD2 when bound to cerebellin-1 and neurexin-1β.[15] These changes may signal up to the N-terminal domain or down to the C-terminal domain to alter protein-protein interactions.

Pathology

A heterozygous deletion in GRID2 in humans causes a complicated spastic paraplegia with ataxia, frontotemporal dementia, and lower motor neuron involvement[16] whereas a homozygous biallelic deletion leads to a syndrome of cerebellar ataxia with marked developmental delay, pyramidal tract involvement[17] and tonic upgaze,[18] that can be classified as an ataxia with oculomotor apraxia (AOA) and has been named spinocerebellar ataxia, autosomal recessive type 18 (SCAR18).

A gain of channel function, resulting from a point mutation in mouse GRID2, is associated with the phenotype named 'lurcher', which in the heterozygous state leads to ataxia and motor coordination deficits resulting from selective, cell-autonomous apoptosis of cerebellar Purkinje cells during postnatal development.[19][20] Mice homozygous for this mutation die shortly after birth from massive loss of mid- and hindbrain neurons during late embryogenesis.

Ligands

9-Aminoacridine, 9-tetrahydroaminoacridine, N1-dansyl-spermine, N1-dansyl-spermidine, and pentamidine have been shown to act as antagonists of δ2-containing receptors.[21]

Interactions

GRID2 has been shown to interact with GOPC,[22] GRIK2,[23] PTPN4[24] and GRIA1.[23] A possible correlation between GRID2 and the pre-B lymphocyte protein 3 (VPREB3) has been suggested, due to the apparent importance of B-lymphocytes in the origins of cerebellar Purkinje neurons in humans.[25][26][27][28][29] Morphological studies conducted in GRID2-knockout mice suggest that GRID2 may be present in lymphocytes as well as in the adrenal cortex, however further studies must be conducted to confirm these claims.[28][30]

See also

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000152208 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000071424 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: GRID2 glutamate receptor, ionotropic, delta 2".
  6. Hu W, Zuo J, De Jager PL, Heintz N (Jan 1998). "The human glutamate receptor delta 2 gene (GRID2) maps to chromosome 4q22". Genomics. 47 (1): 143–5. doi:10.1006/geno.1997.5108. PMID 9465309.
  7. 1 2 Lomeli H, Sprengel R, Laurie DJ, Köhr G, Herb A, Seeburg PH, Wisden W (Jan 1993). "The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family". FEBS Letters. 315 (3): 318–22. doi:10.1016/0014-5793(93)81186-4. PMID 8422924. S2CID 43024586.
  8. Naur P, Hansen KB, Kristensen AS, Dravid SM, Pickering DS, Olsen L, Vestergaard B, Egebjerg J, Gajhede M, Traynelis SF, Kastrup JS (August 2007). "Ionotropic glutamate-like receptor delta2 binds D-serine and glycine". Proc. Natl. Acad. Sci. USA. 104 (35): 14116–14121. Bibcode:2007PNAS..10414116N. doi:10.1073/pnas.0703718104. PMC 1955790. PMID 17715062.
  9. 1 2 Hansen KB, Naur P, Kurtkaya NL, Kristensen AS, Gajhede M, Kastrup JS, Traynelis SF (Jan 2009). "Modulation of the dimer interface at ionotropic glutamate-like receptor delta2 by D-serine and extracellular calcium". The Journal of Neuroscience. 29 (4): 907–17. doi:10.1523/JNEUROSCI.4081-08.2009. PMC 2806602. PMID 19176800.
  10. Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M (Dec 1993). "Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells". Biochemical and Biophysical Research Communications. 197 (3): 1267–76. doi:10.1006/bbrc.1993.2614. PMID 7506541.
  11. 1 2 Yuzaki M (Nov 2013). "Cerebellar LTD vs. motor learning-lessons learned from studying GluD2". Neural Networks. 47: 36–41. doi:10.1016/j.neunet.2012.07.001. PMID 22840919.
  12. Matsuda K, Yuzaki M (Mar 2012). "Cbln1 and the δ2 glutamate receptor--an orphan ligand and an orphan receptor find their partners". Cerebellum. 11 (1): 78–84. doi:10.1007/s12311-010-0186-5. PMID 20535596. S2CID 16612844.
  13. Kakegawa W, Miyazaki T, Emi K, Matsuda K, Kohda K, Motohashi J, Mishina M, Kawahara S, Watanabe M, Yuzaki M (February 2008). "Differential regulation of synaptic plasticity and cerebellar motor learning by the C-terminal PDZ-binding motif of GluRdelta2". J. Neurosci. 28 (6): 1460–1468. doi:10.1523/JNEUROSCI.2553-07.2008. PMC 6671576. PMID 18256267.
  14. Kakegawa W, Miyoshi Y, Hamase K, Matsuda S, Matsuda K, Kohda K, Emi K, Motohashi J, Konno R, Zaitsu K, Yuzaki M (May 2011). "D-serine regulates cerebellar LTD and motor coordination through the δ2 glutamate receptor". Nat. Neurosci. 14 (5): 603–611. doi:10.1038/nn.2791. PMID 21460832. S2CID 17507539.
  15. Carrillo, Elisa; Gonzalez, Cuauhtemoc U.; Berka, Vladimir; Jayaraman, Vasanthi (2021-12-24). "Delta glutamate receptors are functional glycine- and ᴅ-serine–gated cation channels in situ". Science Advances. 7 (52): eabk2200. Bibcode:2021SciA....7.2200C. doi:10.1126/sciadv.abk2200. ISSN 2375-2548. PMC 8694607. PMID 34936451.
  16. Maier A, Klopocki E, Horn D, Tzschach A, Holm T, Meyer R, Meyer T (Feb 2014). "De novo partial deletion in GRID2 presenting with complicated spastic paraplegia". Muscle & Nerve. 49 (2): 289–92. doi:10.1002/mus.24096. PMID 24122788. S2CID 26359325.
  17. Utine GE, Haliloğlu G, Salanci B, Çetinkaya A, Kiper PÖ, Alanay Y, Aktas D, Boduroğlu K, Alikaşifoğlu M (Jul 2013). "A homozygous deletion in GRID2 causes a human phenotype with cerebellar ataxia and atrophy". Journal of Child Neurology. 28 (7): 926–32. doi:10.1177/0883073813484967. PMID 23611888. S2CID 206550612.
  18. Hills LB, Masri A, Konno K, Kakegawa W, Lam AT, Lim-Melia E, Chandy N, Hill RS, Partlow JN, Al-Saffar M, Nasir R, Stoler JM, Barkovich AJ, Watanabe M, Yuzaki M, Mochida GH (Oct 2013). "Deletions in GRID2 lead to a recessive syndrome of cerebellar ataxia and tonic upgaze in humans". Neurology. 81 (16): 1378–86. doi:10.1212/WNL.0b013e3182a841a3. PMC 3806907. PMID 24078737.
  19. Lalonde R, Botez MI, Joyal CC, Caumartin M (Mar 1992). "Motor abnormalities in lurcher mutant mice". Physiology & Behavior. 51 (3): 523–5. doi:10.1016/0031-9384(92)90174-Z. PMID 1523229. S2CID 33424240.
  20. Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N (Aug 1997). "Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene". Nature. 388 (6644): 769–73. Bibcode:1997Natur.388..769Z. doi:10.1038/42009. PMID 9285588. S2CID 4431774.
  21. Williams K, Dattilo M, Sabado TN, Kashiwagi K, Igarashi K (May 2003). "Pharmacology of delta2 glutamate receptors: effects of pentamidine and protons". The Journal of Pharmacology and Experimental Therapeutics. 305 (2): 740–8. doi:10.1124/jpet.102.045799. PMID 12606689. S2CID 83540259.
  22. Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N (Aug 2002). "A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice". Neuron. 35 (5): 921–33. doi:10.1016/S0896-6273(02)00861-9. PMID 12372286. S2CID 10534933.
  23. 1 2 Kohda K, Kamiya Y, Matsuda S, Kato K, Umemori H, Yuzaki M (Jan 2003). "Heteromer formation of delta2 glutamate receptors with AMPA or kainate receptors". Brain Research. Molecular Brain Research. 110 (1): 27–37. doi:10.1016/S0169-328X(02)00561-2. PMID 12573530.
  24. Hironaka K, Umemori H, Tezuka T, Mishina M, Yamamoto T (May 2000). "The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits". The Journal of Biological Chemistry. 275 (21): 16167–73. doi:10.1074/jbc.M909302199. PMID 10748123.
  25. Hess DC, Hill WD, Carroll JE, Borlongan CV (Apr 2004). "Do bone marrow cells generate neurons?". Archives of Neurology. 61 (4): 483–5. doi:10.1001/archneur.61.4.483. PMID 15096394.
  26. Weimann JM, Johansson CB, Trejo A, Blau HM (Nov 2003). "Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant". Nature Cell Biology. 5 (11): 959–66. doi:10.1038/ncb1053. PMID 14562057. S2CID 33685652.
  27. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A (Oct 2003). "Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes". Nature. 425 (6961): 968–73. Bibcode:2003Natur.425..968A. doi:10.1038/nature02069. hdl:2027.42/62789. PMID 14555960. S2CID 4394453.
  28. 1 2 Felizola SJ, Katsu K, Ise K, Nakamura Y, Arai Y, Satoh F, Sasano H (May 2015). "Pre-B Lymphocyte Protein 3 (VPREB3) Expression in the Adrenal Cortex: Precedent for non-Immunological Roles in Normal and Neoplastic Human Tissues". Endocrine Pathology. 26 (2): 119–28. doi:10.1007/s12022-015-9366-7. PMID 25861052. S2CID 27271366.
  29. Kemp K, Wilkins A, Scolding N (Nov 2014). "Cell fusion in the brain: two cells forward, one cell back". Acta Neuropathologica. 128 (5): 629–38. doi:10.1007/s00401-014-1303-1. PMC 4201757. PMID 24899142.
  30. Berenova M, Mandakova P, Sima P, Slipka J, Vozeh F, Kocova J, Cervinkova M, Sykora J (2002). "Morphology of Adrenal Gland and Lymph Organs is Impaired in Neurodeficient Lurcher Mutant Mice". Acta Vet. Brno. 71: 23–28. doi:10.2754/avb200271010023.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.