Ernst Kötter
Born(1859-08-07)7 August 1859
Died26 January 1922(1922-01-26) (aged 62)[1]
Alma materUniversity of Berlin
AwardsPrize of the Berlin Royal Academy (1886)
Scientific career
FieldsMathematician
ThesisZur Theorie der Osculationen bei ebenen Curven 3. Ordnung (1884)
Academic advisorsKarl Weierstrass
Leopold Kronecker

Ernst Kötter (1859-1922) was a German mathematician.

Education

Kötter graduated in 1884 from the University of Berlin under the supervision of Karl Weierstrass and Leopold Kronecker.[2]

Career

Kötter's treatise "Fundamentals of a purely geometrical theory of algebraic plane curves" gained the 1886 prize of the Berlin Royal Academy.[3]

In 1901, he published his report on "The development of synthetic geometry from Monge to Staudt (1847)";[4] it had been sent to the press as early as 1897, but completion was deferred by Kötter's appointment to Aachen University and a subsequent persisting illness.[5] He constructed a mobile wood model to illustrate the theorems of Dandelin spheres.[6][7]

In a discussion with Schoenflies and Kötter, Hilbert reportedly uttered his famous quotation according to which points, lines, and planes in geometry could be named as well "tables, chairs, and beer mugs".[8]

Publications

  • Ernst Kötter (Jun 1884). Beiträge zur Theorie der Osculationen bei ebenen Curven dritter Ordnung (Ph.D.). Friedrich-Wilhelms-Universität Berlin. Archived from the original on 2016-03-04. Retrieved 2022-01-21.
  • Ernst Kötter (1887). "Grundzüge einer rein geometrischen Theorie der algebraischen ebenen Kurven". Royal Academy of Berlin.
  • Ernst Kötter (Oct 1888). "Die Hesse'sche Curve in rein geometrischer Behandlung" (PDF). Mathematische Annalen. 34: 123–149. doi:10.1007/bf01446793. S2CID 119585670. Retrieved 2019-08-10.
  • Ernst Kötter (1891). "Einige Hauptsätze aus der Lehre von den Curven dritter Ordnung" (PDF). Mathematische Annalen. 38 (2): 287–297. doi:10.1007/bf01199255. S2CID 120687043.
  • Ernst Kötter (1892). "Ueber diejenigen Polyeder, die bei gegebener Gattung und gegebenem Volumen die kleinste Oberfläche besitzen. Erste Abhandlung". Journal für die reine und angewandte Mathematik. 110: 198–229.
  • Ernst Kötter (1900). "Construction der Oberfläche zweiter Ordnung, welche neun gegebene Punkte enthält". Jahresbericht der Deutschen Mathematiker-Vereinigung: 99–102.

References

  1. German National Library: Record Xml
  2. Ernst Kötter at the Mathematics Genealogy Project
  3. Norman Fraser (Feb 1888). "Kötter's synthetic geometry of algebraic curves". Proceedings of the Edinburgh Mathematical Society. 7: 46–61. doi:10.1017/s0013091500030364. Here: p.46
  4. Ernst Kötter (1901). Die Entwickelung der Synthetischen Geometrie von Monge bis auf Staudt (1847). Archived from the original on 2016-03-04. Retrieved 2019-08-10. (2012 Reprint as ISBN 1275932649)
  5. Kötter (1901), Preface, p.VIII
  6. "Vermischtes (Miscellany)". Jahresbericht der Deutschen Mathematiker-Vereinigung. 16: 82. 1907.
  7. Illustration of Groningen University
  8. Otto Blumenthal (1935). David Hilbert (ed.). Lebensgeschichte. Gesammelte Abhandlungen. Vol. 3. Julius Springer. pp. 388–429. Archived from the original on 2016-03-04. Retrieved 2019-08-10. Here: p.402-403


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.