Androdioecy is a reproductive system characterized by the coexistence of males and hermaphrodites. Androdioecy is rare in comparison with the other major reproductive systems: dioecy, gynodioecy and hermaphroditism.[1] In animals, androdioecy has been considered a stepping stone in the transition from dioecy to hermaphroditism, and vice versa.[2]

Androdioecy is sometimes referred to as a mixed breeding system with trioecy and gynodioecy.[3] It is a dimorphic sexual system in plants comparable with gynodioecy and dioecy.[4]

Evolution of androdioecy

The fitness requirements for androdioecy to arise and sustain itself are theoretically so improbable that it was long considered that such systems do not exist.[5][6] Particularly, males and hermaphrodites have to have the same fitness, in other words the same number of offspring, in order to be maintained. However, males only have offspring by fertilizing eggs or ovules of hermaphrodites, while hermaphrodites have offspring both through fertilizing eggs or ovules of other hermaphrodites and their own ovules. This means that all else being equal, males have to fertilize twice as many eggs or ovules as hermaphrodites to make up for the lack of female reproduction.[7][8]

Androdioecy can evolve either from hermaphroditic ancestors through the invasion of males or from dioecious ancestors through the invasion of hermaphrodites. The ancestral state is important because conditions under which androdioecy can evolve differ significantly.

Androdioecy with dioecious ancestry

In roundworms, clam shrimp, tadpole shrimp and cancrid shrimps, androdioecy has evolved from dioecy. In these systems, hermaphrodites can only fertilize their own eggs (self-fertilize) and do not mate with other hermaphrodites. Males are the only means of outcrossing. Hermaphrodites may be beneficial in colonizing new habitats, because a single hermaphrodite can generate many other individuals.[9]

In the well-studied roundworm Caenorhabditis elegans, males are very rare and only occur in populations that are in bad condition or stressed.[10] In Caenorhabditis elegans androdioecy is thought to have evolved from dioecy, through a trioecous intermediate.[11]

Androdioecy with hermaphroditic ancestry

In barnacles, androdioecy evolved from hermaphroditism.[3] Many plants self-fertilize, and males may be sustained in a population when inbreeding depression is severe because males guarantee outcrossing.

Types of androdioecy

The most common form of androdioecy in animals involves hermaphrodites that can reproduce by autogamy or allogamy through ovum with males. However, this type does not involve outcrossing with sperm. This type of androdioecy generally occurs in predominantly gonochoric taxonomy groups.[12]:21

One type of androdioecy contains outcrossing hermaphrodites which is present in some angiosperms.[12]:21

Another type of androdioecy has males and simultaneous hermaphrodites in a population due to developmental or conditional sex allocation. Like in some fish species small individuals are hermaphrodites and under circumstances of high density, large individuals become male.[12]:21

Androdioecious species

Despite their unlikely evolution, 115 androdioecious animal and about 50 androdioecious plant species are known.[2][13] These species include

Anthozoa (Corals)

Nematoda (Roundworms)

Rhabditidae (Order Rhabditida)

Diplogastridae (Order Rhabditida)

Steinernematidae (Order Rhabditida)

Allanotnematidae (Order Rhabditida)

Dorylaimida

  • Dorylaimus liratus

Nemertea (Ribbon worms)

Arthropoda

Clam shrimp

  • Eulimnadia texana[22]
  • Eulimnadia africana
  • Eulimnadia agassizii
  • Eulimnadia antlei
  • Eulimnadia braueriana
  • Eulimnadia brasiliensis
  • Eulimnadia colombiensis
  • Eulimnadia cylondrova
  • Eulimnadia dahli
  • Eulimnadia diversa
  • Eulimnadia feriensis
  • Eulimnadia follisimilis
  • Eulimnadia thompsoni
  • Eulimnadia sp. A
  • Eulimnadia sp. B
  • Eulimnadia sp. C

Tadpole shrimp

Barnacles

  • Paralepas klepalae
  • Paralepas xenophorae
  • Koleolepas avis
  • Koleolepas tinkeri
  • Ibla quadrivalvis
  • Ibla cumingii
  • Ibla idiotica
  • Ibla segmentata
  • Calantica studeri
  • Calantica siemensi
  • Calantica spinosa
  • Calantica villosa
  • Arcoscalpellum sp.
  • Euscalpellum squamuliferum
  • Scalpellum peronii
  • Scalpellum scalpellum
  • Scalpellum vulgare
  • Scillaelepas arnaudi
  • Scillaelepas bocquetae
  • Scillaelepas calyculacilla
  • Scillaelepas falcate
  • Scillaelepas fosteri
  • Smilium hastatum
  • Smilium peronii
  • Chelonibia patula[24]
  • Chelonibia testudinaria[25]
  • Bathylasma alearum[26]
  • Bathylasma corolliforme
  • Conopea galeata[27]
  • Conopea calceola[27]
  • Conopea merrilli[27]
  • Solidobalanus masignotus[28]
  • Tetrapachylasma trigonum
  • Megalasma striatum
  • Octolasmis warwickii[29]

Lysmata

Insects

Annelida (Ringed worms)

  • Salvatoria clavata
  • Ophryotrocha gracilis
  • Ophryotrocha hartmanni
  • Ophryotrocha diadema
  • Ophryotrocha bacci
  • Ophryotrocha maculata
  • Ophryotrocha socialis

Chordata

Angiosperms (Flowering plants)

See also

References

  1. Pannell, JR. (2002). "The evolution and maintenance of androdioecy". Annual Review of Ecology and Systematics. 33: 397–425. doi:10.1146/annurev.ecolsys.33.010802.150419.
  2. 1 2 Weeks, SC (2012). "The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the Animalia". Evolution. 66 (12): 3670–3686. doi:10.1111/j.1558-5646.2012.01714.x. PMID 23206127. S2CID 3198554.
  3. 1 2 Fusco, Giuseppe; Minelli, Alessandro (2019-10-10). The Biology of Reproduction. Cambridge University Press. p. 134. ISBN 978-1-108-49985-9.
  4. Torices, Rubén; Méndez, Marcos; Gómez, José María (2011). "Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms". New Phytologist. 190 (1): 234–248. doi:10.1111/j.1469-8137.2010.03609.x. ISSN 1469-8137. PMID 21219336.
  5. Charlesworth, D (1984). "Androdioecy and the evolution of dioecy". Biological Journal of the Linnean Society. 22 (4): 333–348. doi:10.1111/j.1095-8312.1984.tb01683.x.
  6. Darwin C. 1877. The different forms of flowers and plants of the same species. New York: Appleton.
  7. Lloyd, DG (1975). "The maintenance of gynodioecy and androdioecy in angiosperms". Genetica. 45 (3): 325–339. doi:10.1007/bf01508307. S2CID 20410507.
  8. Charlesworth, B; Charlesworth, D (1978). "A Model for the Evolution of Dioecy and Gynodioecy". The American Naturalist. 112 (988): 975–997. doi:10.1086/283342. S2CID 83907227.
  9. Pannell, J (2000). "A hypothesis for the evolution of androdioecy: the joint influence of reproductive assurance and local mate competition in a metapopulation". Evolutionary Ecology. 14 (3): 195–211. doi:10.1023/A:1011082827809. S2CID 38050756.
  10. 1 2 Stewart, AD; Phillips, PC (2002). "Selection and maintenance of androdioecy in Caenorhabditis elegans". Genetics. 160 (3): 975–982. doi:10.1093/genetics/160.3.975. PMC 1462032. PMID 11901115.
  11. Kanzaki, Natsumi; Kiontke, Karin; Tanaka, Ryusei; Hirooka, Yuuri; Schwarz, Anna; Müller-Reichert, Thomas; Chaudhuri, Jyotiska; Pires-daSilva, Andre (2017-09-11). "Description of two three-gendered nematode species in the new genus Auanema (Rhabditina) that are models for reproductive mode evolution". Scientific Reports. 7 (1): 11135. Bibcode:2017NatSR...711135K. doi:10.1038/s41598-017-09871-1. ISSN 2045-2322. PMC 5593846. PMID 28894108.
  12. 1 2 3 Leonard, Janet L. (2019-05-21). Transitions Between Sexual Systems: Understanding the Mechanisms of, and Pathways Between, Dioecy, Hermaphroditism and Other Sexual Systems. Springer. ISBN 978-3-319-94139-4.
  13. Weeks, SC; Benvenuto, C; Reed, SK (2006). "When males and hermaphrodites coexist: a review of androdioecy in animals". Integrative and Comparative Biology. 46 (4): 449–464. doi:10.1093/icb/icj048. PMID 21672757.
  14. Fürst von Lieven A (2008). "Koerneria sudhausi n. sp. (Nematoda: Diplogastridae); a hermaphroditic diplogastrid with an egg shell formed by zygote and uterine components". Nematology. 10 (1): 27–45. doi:10.1163/156854108783360087.
  15. Kiontke K, Manegold A, Sudhaus W (2001). "Redescription of Diplogasteroides nasuensis Takaki, 1941 and D. magnus Völk, 1950 (Nematoda: Diplogastrina) associated with Scarabaeidae (Coleoptera)". Nematology. 3 (8): 817–832. doi:10.1163/156854101753625317.
  16. Ragsdale EJ, Kanzaki N, Sommer RJ (2014). "Levipalatum texanum n. gen., n. sp. (Nematoda: Diplogastridae), an androdioecious species from the south-eastern USA". Nematology. 16 (6): 695–709. doi:10.1163/15685411-00002798. S2CID 17802237.
  17. 1 2 Kanzaki N, Ragsdale EJ, Herrmann M, Susoy V, Sommer RJ (2013). "Two androdioecious and one dioecious new species of Pristionchus (Nematoda: Diplogastridae): new reference points for the evolution of reproductive mode". Journal of Nematology. 45 (3): 172–194. PMC 3792836. PMID 24115783.
  18. Kanzaki N, Ragsdale EJ, Herrmann M, Sommer RJ (2012). "Two new species of Pristionchus (Rhabditida: Diplogastridae): P. fissidentatus n. sp. from Nepal and La Réunion Island and P. elegans n. sp. from Japan". Journal of Nematology. 44 (1): 80–91. PMC 3593256. PMID 23483847.
  19. Potts FA (1908). "Sexual phenomena in the free-living nematodes". Proceedings of the Cambridge Philosophical Society. 14: 373–375.
  20. Ragsdale EJ, Kanzaki N, Röseler W, Herrmann M, Sommer RJ (2013). "Three new species of Pristionchus (Nematoda: Diplogastridae) show morphological divergence through evolutionary intermediates of a novel feeding-structure polymorphism". Zoological Journal of the Linnean Society. 168 (4): 671–698. doi:10.1111/zoj.12041. S2CID 4484091.
  21. 1 2 Hermmann M, Ragsdale EJ, Kanzaki N, Sommer RJ (2013). "Sudhausia aristotokia n. gen., n. sp. and S. crassa n. gen., n. sp. (Nematoda: Diplogastridae): viviparous new species with precocious gonad development". Nematology. 15 (8): 1001–1020. doi:10.1163/15685411-00002738. S2CID 4505014.
  22. Vicky G. Hollenbeck; Stephen C. Weeks; William R. Gould; Naida Zucker (2002). "Maintenance of androdioecy in the freshwater shrimp Eulimnadia texana: sexual encounter rates and outcrossing success". Behavioral Ecology. 13 (4): 561–570. doi:10.1093/beheco/13.4.561.
  23. Zierold, T; Hanfling, B; Gómez, A (2007). "Recent evolution of alternative reproductive modes in the'living fossil'Triops cancriformis". BMC Evolutionary Biology. 7 (1): 161. doi:10.1186/1471-2148-7-161. PMC 2075510. PMID 17854482.
  24. Crisp, DJ (1983). "Chelonobia patula (Ranzani), a pointer to the evolution of the complemental male". Marine Biology Letters. 4: 281–294.
  25. Zardus, JD; Hadfield, MG (2004). "Larval Development and Complemental Males in Chelonibia testudinaria, a Barnacle Commensal with Sea Turtles". Journal of Crustacean Biology. 24 (3): 409–421. doi:10.1651/c-2476.
  26. Foster, BA (1983). "Complemental males in the barnacle Bathylasma alearum (cirripedia, pachylasmatidae)". Australian Museum Memoir. 18 (12): 133–140. doi:10.3853/j.0067-1967.18.1984.379.
  27. 1 2 3 McLaughlin, PA; Henry, DP (1972). "Comparative Morphology of Complemental Males in Four Species of Balanus (Cirripedia Thoracica)". Crustaceana. 22 (1): 13–30. doi:10.1163/156854072x00642.
  28. Henry, DP; McLaughlin, PA (1967). "A Revision of the Subgenus Solidobalanus Hoek (Cirripedia Thoracica) including a Description of a New Species with Complemental Males". Crustaceana. 12 (1): 43–58. doi:10.1163/156854067x00693.
  29. Yusa, Y; Takemura, M; Miyazaki, K; Watanabe, T; Yamato, S (2010). "Dwarf Males of Octolasmis warwickii (Cirripedia: Thoracica): The First Example of Coexistence of Males and Hermaphrodites in the Suborder Lepadomorpha". The Biological Bulletin. 218 (3): 259–265. doi:10.1086/bblv218n3p259. PMID 20570849. S2CID 23908199.
  30. Mackiewicz; Tatarenkov, A; Taylor, DS; Turner, BJ; Avise, JC; et al. (2006). "Extensive outcrossing and androdioecy in a vertebrate species that otherwise reproduces as a self-fertilizing hermaphrodite". Proc Natl Acad Sci USA. 103 (26): 9924–9928. Bibcode:2006PNAS..103.9924M. doi:10.1073/pnas.0603847103. PMC 1502555. PMID 16785430.
  31. Gleiser G, Verdú M. 2005. Repeated evolution of dioecy from androdioecy in Acer" New Phytologist 165(2):633-640. doi=10.1111/j.1469-8137.2004.01242.x
  32. Sakai, S (2001). "Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest". American Journal of Botany. 88 (9): 1527–1534. doi:10.2307/3558396. JSTOR 3558396. PMID 21669685.
  33. Pannell J (1997). "Widespread functional androdioecy in Mercurialis annua L. (Euphorbiaceae)". Biological Journal of the Linnean Society. 61: 95–116. doi:10.1111/j.1095-8312.1997.tb01779.x.
  34. Valiente-Banuet, A; Rojas-Martínez, A; Del Coro, Arizmendi M; Dávila, P (1997). "Pollination biology of two columnar Cacti (Neobuxbaumia mezcalaensis and Neobuxbaumia macrocephala) in the Tehuacan Valley, central Mexico". American Journal of Botany. 84 (4): 452–455. doi:10.2307/2446020. JSTOR 2446020.
  35. Thomson JD, Shivanna KR, Kenrick J and Knox RB. 1989" American Journal of Botany 76 (7):1048-1059
  36. Muenchow, G (1998). "Subandrodioecy and male fitness in Sagittaria lancifolia subsp. lancifolia (Alismataceae)". American Journal of Botany. 85 (4): 513–520. doi:10.2307/2446435. JSTOR 2446435. PMID 21684934.
  37. López-Almansa, JC; Pannell, JR; Gil, L (2003). "Female sterility in Ulmus minor (Ulmaceae): a hypothesis invoking the cost of sex in a clonal plant". American Journal of Botany. 90 (4): 603–609. doi:10.3732/ajb.90.4.603. PMID 21659155.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.