| ||||
---|---|---|---|---|
Cardinal | five thousand | |||
Ordinal | 5000th (five thousandth) | |||
Factorization | 23 × 54 | |||
Greek numeral | ,Ε´ | |||
Roman numeral | V | |||
Unicode symbol(s) | V, v, ↁ | |||
Binary | 10011100010002 | |||
Ternary | 202120123 | |||
Senary | 350526 | |||
Octal | 116108 | |||
Duodecimal | 2A8812 | |||
Hexadecimal | 138816 |
5000 (five thousand) is the natural number following 4999 and preceding 5001. Five thousand is the largest isogrammic numeral in the English language.
![](../I/Wiktionary-logo-en-v2.svg.png.webp)
Look up five thousand in Wiktionary, the free dictionary.
Selected numbers in the range 5001–5999
5001 to 5099
- 5003 – Sophie Germain prime
- 5020 – amicable number with 5564
- 5021 – super-prime, twin prime with 5023
- 5023 – twin prime with 5021
- 5039 – factorial prime,[1] Sophie Germain prime
- 5040 = 7!, superior highly composite number
- 5041 = 712, centered octagonal number[2]
- 5050 – triangular number, Kaprekar number,[3] sum of first 100 integers
- 5051 – Sophie Germain prime
- 5059 – super-prime
- 5076 – decagonal number[4]
- 5081 – Sophie Germain prime
- 5087 – safe prime
- 5099 – safe prime
5100 to 5199
- 5107 – super-prime, balanced prime[5]
- 5113 – balanced prime[5]
- 5117 – sum of the first 50 primes
- 5151 – triangular number
- 5167 – Leonardo prime, cuban prime of the form x = y + 1[6]
- 5171 – Sophie Germain prime
- 5184 = 722
- 5186 – φ(5186) = 2592
- 5187 – φ(5187) = 2592
- 5188 – φ(5189) = 2592, centered heptagonal number[7]
- 5189 – super-prime
5200 to 5299
- 5209 - largest minimal prime in base 6
- 5226 – nonagonal number[8]
- 5231 – Sophie Germain prime
- 5244 = 222 + 232 + … + 292 = 202 + 212 + … + 282
- 5249 – highly cototient number[9]
- 5253 – triangular number
- 5279 – Sophie Germain prime, twin prime with 5281, 700th prime number
- 5280 is the number of feet in a mile.[10] It is divisible by three, yielding 1760 yards per mile and by 16.5, yielding 320 rods per mile. Also, 5280 is connected with both Klein's J-invariant and the Heegner numbers. Specifically:
- 5281 – super-prime, twin prime with 5279
- 5282 - used in various paintings by Thomas Kinkade[11]
- 5292 – Kaprekar number[3]
5300 to 5399
- 5303 – Sophie Germain prime, balanced prime[5]
- 5329 = 732, centered octagonal number[2]
- 5333 – Sophie Germain prime
- 5335 – magic constant of n × n normal magic square and n-queens problem for n = 22.
- 5340 – octahedral number[12]
- 5356 – triangular number
- 5365 – decagonal number[4]
- 5381 – super-prime
- 5387 – safe prime, balanced prime[5]
- 5392 – Leyland number[13]
- 5393 – balanced prime[5]
- 5399 – Sophie Germain prime, safe prime
5400 to 5499
- 5402 – number of non-equivalent ways of expressing 1,000,000 as the sum of two prime numbers[14]
- 5405 – member of a Ruth–Aaron pair with 5406 (either definition)
- 5406 – member of a Ruth–Aaron pair with 5405 (either definition)
- 5419 – Cuban prime of the form x = y + 1[6]
- 5441 – Sophie Germain prime, super-prime
- 5456 – tetrahedral number[15]
- 5459 – highly cototient number[9]
- 5460 – triangular number
- 5461 – super-Poulet number,[16] centered heptagonal number[7]
- 5476 = 742
- 5483 – safe prime
5500 to 5599
- 5500 – nonagonal number[8]
- 5501 – Sophie Germain prime, twin prime with 5503
- 5503 – super-prime, twin prime with 5501, cousin prime with 5507
- 5507 – safe prime, cousin prime with 5503
- 5525 – square pyramidal number[17]
- 5527 – happy prime
- 5536 – tetranacci number[18]
- 5557 – super-prime
- 5563 – balanced prime
- 5564 – amicable number with 5020
- 5565 – triangular number
- 5566 – pentagonal pyramidal number[19]
- 5569 – happy prime
- 5571 – perfect totient number[20]
- 5581 – prime of the form 2p-1
5600 to 5699
- 5623 – super-prime
- 5625 = 752, centered octagonal number[2]
- 5631 – number of compositions of 15 whose run-lengths are either weakly increasing or weakly decreasing[21]
- 5639 – Sophie Germain prime, safe prime
- 5651 – super-prime
- 5659 – happy prime, completes the eleventh prime quadruplet set
- 5662 – decagonal number[4]
- 5671 – triangular number
5700 to 5799
- 5701 – super-prime
- 5711 – Sophie Germain prime
- 5719 – Zeisel number,[22] Lucas–Carmichael number[23]
- 5741 – Sophie Germain prime, Pell prime,[24] Markov prime,[25] centered heptagonal number[7]
- 5749 – super-prime
- 5768 – tribonacci number[26]
- 5776 = 762
- 5777 – smallest counterexample to the conjecture that all odd numbers are of the form p + 2a2
- 5778 – triangular number
- 5781 – nonagonal number[8]
- 5798 – Motzkin number[27]
5800 to 5899
- 5801 – super-prime
- 5807 – safe prime, balanced prime
- 5832 = 183
- 5842 – member of the Padovan sequence[28]
- 5849 – Sophie Germain prime
- 5869 – super-prime
- 5879 – safe prime, highly cototient number[9]
- 5886 – triangular number
5900 to 5999
Prime numbers
There are 114 prime numbers between 5000 and 6000:[29][30]
- 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987
References
- ↑ "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 4 "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 "Sloane's A006886 : Kaprekar numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 4 "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 4 5 "Sloane's A006562 : Balanced primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 "Sloane's A100827 : Highly cototient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Weights and measures". www.merriam-webster.com. Merriam-Webster. Retrieved 11 March 2021.
- ↑ "My 14-Hour Search for the End of TGI Friday's Endless Appetizers". 18 July 2014.
- ↑ "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ Sloane, N. J. A. (ed.). "Sequence A065577 (Number of Goldbach partitions of 10^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-08-31.
- 1 2 "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A000330 : Square pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A000078 : Tetranacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A082897 : Perfect totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
- ↑ "Sloane's A051015 : Zeisel numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A006972 : Lucas-Carmichael numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A000129 : Pell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.