Doubles | |
---|---|
2013 Sparkasse ATP Challenger | |
Champion | ![]() ![]() |
Runner-up | ![]() ![]() |
Score | 6–2, 7–5 |
Karol Beck and Rik de Voest were the defending champions but they decided not to participate.
German team and fourth seeds Christopher Kas and Tim Pütz won the title over Benjamin Becker and Daniele Bracciali
Seeds
Purav Raja /
Divij Sharan (semifinals)
Dustin Brown /
Philipp Marx (first round)
James Cerretani /
Adil Shamasdin (first round)
Christopher Kas /
Tim Pütz (champion)
Draw
Key
- Q = Qualifier
- WC = Wild card
- LL = Lucky loser
- Alt = Alternate
- SE = Special exempt
- PR = Protected ranking
- ITF = ITF entry
- JE = Junior exempt
- w/o = Walkover
- r = Retired
- d = Defaulted
- SR = Special ranking
Draw
First round | Quarterfinals | Semifinals | Final | ||||||||||||||||||||||||
1 | ![]() ![]() | 6 | 6 | ||||||||||||||||||||||||
WC | ![]() ![]() | 1 | 3 | 1 | ![]() ![]() | 78 | 6 | ||||||||||||||||||||
![]() ![]() | 2 | 2 | ![]() ![]() | 66 | 2 | ||||||||||||||||||||||
![]() ![]() | 6 | 6 | 1 | ![]() ![]() | 63 | 2 | |||||||||||||||||||||
4 | ![]() ![]() | 3 | 6 | [10] | 4 | ![]() ![]() | 77 | 6 | |||||||||||||||||||
![]() ![]() | 6 | 3 | [9] | 4 | ![]() ![]() | 6 | 6 | ||||||||||||||||||||
![]() ![]() | w/o | ![]() ![]() | 1 | 4 | |||||||||||||||||||||||
![]() ![]() | 4 | ![]() ![]() | 6 | 7 | |||||||||||||||||||||||
WC | ![]() ![]() | 4 | 6 | [8] | ![]() ![]() | 2 | 5 | ||||||||||||||||||||
![]() ![]() | 6 | 2 | [10] | ![]() ![]() | 78 | 77 | |||||||||||||||||||||
![]() ![]() | 63 | 6 | [10] | ![]() ![]() | 66 | 64 | |||||||||||||||||||||
3 | ![]() ![]() | 77 | 4 | [8] | ![]() ![]() | 2 | 1 | ||||||||||||||||||||
![]() ![]() | 6 | 6 | ![]() ![]() | 6 | 6 | ||||||||||||||||||||||
WC | ![]() ![]() | 2 | 1 | ![]() ![]() | 6 | 6 | |||||||||||||||||||||
![]() ![]() | 6 | 62 | [10] | ![]() ![]() | 3 | 4 | |||||||||||||||||||||
2 | ![]() ![]() | 4 | 77 | [6] |
References
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.